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Introduction

Cancer is still one of the life threatening diseases and 
the second leading cause of death in the world. The 
design and development of novel, more active mol-
ecules that selectively kill tumour cells or inhibit their 
proliferation without the general toxicity are one of 
the most important goals in medicinal chemistry. The 
discovery of novel bioactive molecules depends on the 
validated targets, among which is the oncogene Ras. 
Ras proteins are small GTPases (G-protein) that plays 
a key role in cell growth and cell proliferation in the 
mitogen-activated protein kinase signal transduction 
pathway1.

The post-translational modification of the onco-
genic Ras protein by the farnesyl pyrophosphate (FPP) 
intermediate begins with the farnesylation of a carboxy 

terminus protein in the CAAX (tetrapeptide motif C: 
Cys, A: an aliphatic amino acid, X: Ser, Met, Gln, Ala 
at their C-terminal) sequence by farnesyltransferase 
(FTase). This farnesylation step is critical for membrane 
binding and the biological function of G-proteins2,3 
and its inhibition in the signal transduction pathway 
affects the G-protein function leading to inhibition of 
cell proliferation. FTase inhibitors have been exten-
sively developed as anticancer agents because of their 
ability to block tumour growth3. A survey of cancer cell 
lines has shown that >70% of cells are sensitive to FTase 
inhibitors. Some FTase inhibitors, such as R115777 
(tipifarnib), SCH66336 (lonafarnib), BMS 214662, 
L-778-123, and SCH44342 are currently being assessed 
in clinical trials and have demonstrated clinical efficacy 
for the treatment of human cancers4–7. The research on 
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FTase inhibitors in several other non-cancer related 
illnesses e.g. malaria, the African sleeping sickness, 
Chagas disease, leishmaniasis, and toxoplasmosis is 
presently underway8–11. Research efforts in this area are 
progressing on the rapid development of novel FTase 
inhibitors for cancer therapy12,13.

Computational based drug design is a rapidly grow-
ing field and an important component of the medicinal 
chemistry discipline. It is aimed at shortening the drug 
discovery process, which otherwise may be much longer 
and expensive. Understanding the interactions between 
small molecules and their molecular targets should 
improve our ability to predict the activity of new com-
pounds. The interaction is dependent upon the structural 
features of the molecules and the target. Quantitative 
structure-activity relationship (QSAR) is one of the pos-
sible techniques to study the structural features of the 
compounds needed for the interaction with the target by 
validated QSAR models. The development of validated 
QSAR models is also an important step in the biological 
activity prediction of molecules14.

Our research group has been directly involved for 
the past 7 years in the study of FTase, focusing mainly 
on the catalytic mechanism of this important enzyme. 
In particular, we have performed a series of detailed 
quantum mechanical studies on the several Zn coordi-
nation spheres formed during the catalytic mechanism 
of FTase15–18, in an attempt to reconcile what was ini-
tially regarded as contradicting experimental evidence 
arising from the available X-ray crystallographic struc-
tures19–21, extended X-ray absorption fine structure22 
results and kinetic and mutagenesis data23–27. These 
studies served as a basis for several other analysis on 
important but more general properties on the global 
enzyme and active-site residues through extensive 
molecular dynamics simulations29,30, and culminated 
with the finding and theoretical characterization of the 
transition state structure for the farnesylation process31, 
a feature which was confirmed in other independent 
studies32.

In the present investigation, we have performed 
a QSAR analysis on the structural features, especially 
the P_VSA descriptors and other descriptors, of novel 
benzofuran derivatives for FTase inhibitory and anti-
proliferative activity. Benzofuran derivatives, with a 
heterocyclic nucleus, have been shown to have a num-
ber of important activities, including anti-HIV, antican-
cer, antimicrobial, non-selective aromatase-inhibitory 
activity, etc33,34. The P_VSA descriptors include a novel 
set of descriptors called widely applicable set of descrip-
tors` (SMR, SlogP, PEOE, and Q) derived by summing 
the approximate exposed surface area for each atom 
according to the classification based upon logP (SlogP), 
molar refractivity (SMR) and partial charge (PEOE and 
Q). The P_VSA descriptors are based on approximate 
van der Waals surface area (VSA) calculations using 
connection table approximation for an atom i, along 
with some atomic property P. Each descriptor in this 

series is defined as the atomic VSA contributions of 
each atom i with property P

i
 in the range (u,v). Thus 

P_VSA(u,v) can be defined as given in Equation 1.

P_VSA
(u,v)

 = ΣV
i
δ[P

i
€(u,v)]� (1)

 where V
i
 is atomic contribution of atom i to the VSA of 

the molecule35–37.
The literature study shows that there is no QSAR work 

done on this series of compounds. In the present study, 
P_VSA descriptors along with the BCUT and the atom 
and bond count descriptors were used to correlate the 
structural properties of benzofuran derivatives respon-
sible for FTase inhibitory activity with the validated 
QSAR models. The models were validated by internal 
validation [leave one out (LOO) crossvalidation], exter-
nal validation (test and inactive compounds), distance 
approaches, multicollinearity, and serial autocorrela-
tion studies were done to validate the models. The first 
two variables describe the predictive power of the mod-
els and the latter variables describe the stability of the 
models.

Experimental

Data set
A series of novel benzofuran derivatives, for which the 
FTase inhibitory activity and the antiproliferative activ-
ity on human non-small cell lung carcinoma (QG56) has 
been recently described in the literature38 was consid-
ered to perform the QSAR study. This series was based 
on tipifarnib (R1157778), one of the most potent FTase 
inhibitors currently undergoing clinical trials, with a 
novel benzofuran core template replacing the quinoli-
none moiety of tipifarnib38. In this series, 30 compounds 
were reported with inhibitory concentration (IC

50
) in 

the nM range (Table 1). Among the 30 compounds, only 
29 compounds have defined inhibitory activity against 
FTase and 27 compounds have antiproliferative activity 
against QG56 cell lines. The inhibitory concentration of 
the molecules was converted into−logIC

50
 or log1/IC

50
 

(pIC
50

) to reduce the skewness of the data and further 
convert into free energy changes of the molecules. The 
IC

50
 of the compounds (nM) were converted to molar 

concentration before calculating as −logIC
50

.

Descriptor calculation
Computational studies of the compounds were per-
formed with Molecular Operating Environment (MOE, 
Montreal, Canada)39 and Statistica40 softwares (Tulsa, 
OK). The template structure obtained from the available 
X-ray crystallographic data (PDB code: 2ZIS and 2ZIR38) 
was used to sketch the 3D structures of the molecules. 
MOE molecular modelling software was used to perform 
energy optimization and descriptor calculations. The 
semi-empirical MOPAC program with Austin Model 1 
(AM1) Hamiltonian gradients of MOE software was used 
to optimize the geometry of the molecules. The QuaSAR 

Jo
ur

na
l o

f 
E

nz
ym

e 
In

hi
bi

tio
n 

an
d 

M
ed

ic
in

al
 C

he
m

is
tr

y 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
M

al
m

o 
H

og
sk

ol
a 

on
 1

2/
27

/1
1

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



Study of benzofuran derivatives  779

© 2011 Informa UK, Ltd.�

module of MOE was used for descriptor calculations. A 
large number of theoretical molecular descriptors are 
available in the package to define the structural prop-
erties of molecules explicitly. The descriptors found in 
the module include physical properties (14 descriptors), 

subdivided surface areas (18 descriptors), atom, and 
bond counts (41 descriptors), Kier and Hall connectiv-
ity and κ-shape indices (16 descriptors), adjacency 
and distance matrix descriptors (33 descriptors), phar-
macophore feature descriptors (12 descriptors), and 

Table 1.  Structure and activity of benzofuran derivatives considered for the present study.

R1

R4

N

N

O

R2

H3C

R3

A

B

Compound code R
1

R
2

R
3

R
4

FTase IC
50

 (nM) QG56 IC
50

 (nM)

8a Cl NO
2

H OH 170 1885

8b Br NO
2

H OH 360 1477

8c I NO
2

H OH 360 >10000

8d COO-t-Bu NO
2

H OH >1000 6248

8e COOH NO
2

H OH 850 >10,000

8f NO
2

NO
2

H OH 30 547

8g OCH
3

NO
2

H OH 250 4967

8h CN NO
2

H OH 6.4 1477

8i CN NO
2

2-F OH 3.3 89.5

8j CN NO
2

3-OCH
3

OH 8.5 38.8

8k CN NO
2

3-CN OH 2.8 22.9

8l CN NO
2

3-CH
3

OH 11 23.2

8m CN NO
2

3-F OH 6.3 145

8n CN NO
2

4-OCH
3

OH 4 36

8o CN NO
2

4-CN OH 3.4 32.6

8p CN NO
2

4-F OH 7.2 158

8q CN COOCH
3

3-OCH
3

OH 3.2 36.3

8r CN CONH
2

3-OCH
3

OH 0.9 8.2

8s CN CHO 3-OCH
3

OH 2 15.2

8t CN CH
2
OH 3-OCH

3
OH 1 16.8

8u CN CH
2
N(CH

3
)

2
3-OCH

3
OH 11 142

8v CN
N O

H
N

O

3-OCH
3

OH 2.6 Nt

8w Cl
N O

H
N

O

H OH 6.4 73.6

8x CN CN H OH 2.4 14.5
11a (S) CN NO

2
H NH

2
1.5 5.9

11b (R) CN NO
2

H NH
2

49 206.1

11c (S) CN NO
2

3-OCH
3

NH
2

0.8 1.1

11d (S) CN CN 3-OCH
3

NH
2

1.2 1.5

11e (S) CN CN 3-CN NH
2

0.7 2

11f (S) CN CN 3-F NH
2

1.1 2

FTase, farnesyltransferase.
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partial charge descriptors (50 descriptors). The P_VSA 
descriptors are a set of 52 2D descriptors describing 
electrostatic, lipophilic, steric, and pharmacophoric 
properties in terms of molecular surface41,42.

Statistical analysis
The calculated descriptors were initially screened for 
invariant nature and insignificance using QuaSAR-
Contingency module of MOE. QuaSAR-Contingency is a 
statistical application designed to assist in the selection 
of descriptors for QSAR. In order to reduce the redun-
dant and useless information, descriptors that possess 
zero correlation on the dependent variable (biological 
activity) as well as descriptors showing intercorrela-
tion superior to 0.5 were discarded (Supplementary 
Table S1 and S2). The data set was divided into training 
and test set in order to perform the QSAR analysis. The 
test set compounds (six compounds) were selected by 
random.

In order to quantify the correlation, QSAR models 
were developed using observed FTase inhibitory activity 
or antiproliferative activity, as dependent variables, and 
the calculated physicochemical descriptors as indepen-
dent variables for multiple linear regression (MLR) anal-
ysis and partial least square (PLS) regression analysis. 
Statistica 8.0 software was used to develop statistically 
significant models for the complete data set that posses 
defined activity. Since a multiple linear model with a 
large number of variables can be too cumbersome to use, 
we have used stepwise regression to refine the model 
by determining the relative importance of each variable 
and its statistical significance. Furthermore, an equation 
containing an excessive number of independent vari-
ables is likely to be overfitted. Hence, the upper limit of 
rule of thumb (six cases per variable) was adopted in the 
analysis37.

The significant models were selected for further study 
taking into account high correlation coefficients, F

test
, 

t
test

 values and significance of the descriptors included 
in the model building [variable inflation factor (VIF), 
Durbin–Watson (DW) and β-coefficients]. The selected 
significant models were validated by internal (LOO) and 
external (test set) validation method. The distance based 
approaches were also used to validate the predictive abil-
ity of the models by the same software.

PLS analysis was performed for the data set with the 
Non-linear Iterative Partial Least Squares (NIPALS) algo-
rithm. NIPALS is a well established iterative technique 
widely used in building principal component analysis 
and PLS analysis models. With its guaranteed conver-
gence rate, typical accuracy, and scalability (i.e. its abil-
ity to handle large data sets), the NIPALS algorithm can 
construct PLS models with reliable efficiency. In the 
study, PLS analysis has been performed which validated 
the QSAR models. A maximum number of criterions of 
50 and convergence criterion of 0.0001 was considered 
for the study.

Results and discussion

Statistical parameters
The correlation between the biological activity (FTase 
inhibitory activity and antiproliferative activity) and 
the structural features were done using QSAR tech-
niques and the obtained results are given in Table 2. In 
the models, N stands for number of compounds (cases) 
contributed to build the respective models. The values 
within the parenthesis following the regression coef-
ficient terms are the standard errors of the regression 
terms and the constants. R is the correlation coefficient 
and R2 is the squared correlation coefficient. They 
describe the relative measure of the quality of fit by 
the regression equation. PLS-R2 stands for the squared 
correlation coefficient derived from the PLS regression 
study. The correlation coefficient explains the variation 
in the observed data (experimental); its value varies 
from −1 to +1. The closer the R-values to 1, the better 
the fit of the regression equation. The R2-value of the 
selected models are >0.83 against FTase inhibitory 
activity and are >0.88 against antiproliferative activity 
(QG56). The comparison of the result obtained from the 
statistical studies (MLR and PLS) are given in Table 3.

F is the Fischer ratio that represents the ratio between 
the variance of calculated and observed activities. The 
values within parentheses that follow the calculated 
F-values are the tabulated values at 99% significance. 
The F-value indicates that the regression relations are 
not a chance fit but are a significant occurrence. t Is the 
Student-t test and the value in the parenthesis after the 
calculated value, is the tabulated t-value at 0.0005 confi-
dence level. The F statistics and the t-value of the models 
have a large margin of difference for the limiting values 
at 0.01 (99%) and 0.0005 (99.95%), respectively, which 
shows the models are statistically significant for further 
study. The contribution of each descriptor (β-coefficient) 
in the model is the regression coefficient that would have 
been obtained by adjusting all of the variables to a mean 
of 0 and a standard deviation of 1. It also allows us to 
compare the relative contribution of each independent 
variable in the prediction of the dependent variables41. In 
the present study, the van der Waals (P_VSA) descriptors 
have high contribution for both activities (FTase inhibi-
tion and antiproliferative activities) along with other 
descriptors such as the atom and bond count, BCUT, 
partial charge, and physical (partition coefficient). The 
graphical representation of this result is given in Figure 1A 
and 1B.

Validation of QSAR models
Any QSAR modelling should ultimately lead to statis-
tically robust models capable of making accurate and 
reliable predictions of biological activities of new com-
pounds. The success of any QSAR model depends on 
the accuracy of the input data, selection of appropriate 
descriptors, and statistical tools and most importantly 
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validation of the developed model. The derived models 
were validated to examine the self-consistency between 
them, which implies a quantitative assessment of the 
model robustness and its predictive power. In this  
analysis, LOO crossvalidation techniques (internal  
validation method) and test set method (external vali-
dation method) were used to find out the predictive 
power of the models.

The results obtained from the internal validation 
method (LOO) show that Q2 (the cross-validated cor-
relation coefficient), which provides the statistical 

significant and predictability of the models has very 
satisfactory values. Q2 is used as a criterion of both 
robustness and predictive ability of the model. A high 
Q2 (for instance Q2 > 0.5) may be considered as an indi-
cator of significant predictivity of the models43–45. Q2 is 
calculated as Equation 2.

Q   
y  y

y  y
 i 

n

i 

n
2 exp pred

2

= 1

exp pred
2

= 1

 1
( )

( )
,= −

−

−
∑
∑

� (2)

Table 2.  Detail of the selected significant QSAR models and their statistical parameters.
Model no. Model Statistical parameters
Activity 1: FTase inhibitory activity
Model 1 pIC

50(FT)
 = 0.0433 (±0.0055) SMR_VSA3 − 41.0947 

(±9.3519) PEOE_RPC+ + 10.6196 (±0.9700)
N = 23, R = 0.9126, R2 = 0.8328, AdjR2 = 0.8161, Q2

train
 = 0.7848, 

Q2
test

 = 0.7658, F
(2,20,0.01)

 = 49.8110 (5.8490), SEE = 0.4069, 
t

(20,0.0005)
 = 10.9480 (3.8495), pP = 0.0000, PRESS

(train)
 = 3.2890, 

PRESS
(test)

 = 0.453, S
PRESS

 = 0.4055, SDEP
(train)

 = 0.3782, 
SDEP

(test)
 = 0.2748, R2

pred
 = 0.8000, R2

m
 = 0.7252, β-value for 

PEOE_RPC+ = −0.4100 and SMR_VSA3  =  0.7340 (PLS: 
R2 = 0.8280, Eigen value: 1.1936, Q2 = 0.7945)

Model 2 pIC
50(FT)

 = 0.8488 (±0.0967) b_triple − 51.9479 (±8.4100) 
PEOE_RPC+ + 12.3112 (±0.8337)

N = 23, R = 0.9269, R2 = 0.8592, AdjR2 = 0.8451, Q2
train

 = 0.8117, 
Q2

test
 = 0.6704, F

(2,20,0.01)
 = 61.0280 (5.8490), SEE = 0.3734, 

t
(20,0.0005)

 = 14.7670 (3.8495), P  =  0.0000, PRESS
(train)

 = 2.7930, 
PRESS

(test)
 = 0.6375, S

PRESS
 = 0.3737, SDEP

(train)
 = 0.3485, 

SDEP
(test)

 = 0.3260, R2
pred

 = 0.7186, R2
m

 = 0.7572, β-value for 
b_triple = 0.7380 and PEOE_RPC+ = −0.5200 (PLS: R2 = 0.8589, 
Eigen value: 1.0566, Q2 = 0.8291)

Activity 2: antiproliferative activity
Model 3 pIC

50(QG56)
 = 0.0377 (±0.0047) VSA_pol −33.7387 

(±5.0556) BCUT_SlogP_3 + 92.1727 (±13.0735)
N = 21, R = 0.9588, R2 = 0.9193, AdjR2 = 0.9104, Q2

train
 = 0.8825, 

Q2
test

 = 0.8614, F
(2,18,0.01)

 = 102.5700 (6.0130), SEE = 0.2958, 
t

(18,0.0005)
 = 7.0503 (3.9216), P  =  0.0000, PRESS

(train)
 = 1.5652, 

PRESS
(test)

 = 1.1884, S
PRESS

 = 0.2949, SDEP
(train)

 = 0.2730, 
SDEP

(test)
 = 0.4450, R2

pred
 = 0.8758, R2

m
 = 0.8326, β-value 

for BCUT_SlogP_3 = −0.5100 and VSA_pol = 0.6050 (PLS: 
R2 = 0.9183, Eigen value: 1.4770, Q2 = 0.8697)

Model 4 pIC
50(QG56)

 = 0.0398 (±0.0064) VSA_acc −35.2638 
(±6.0386) BCUT_SlogP_3 + 96.6178 (±15.5814)

N = 21, R = 0.9403, R2 = 0.8841, AdjR2 = 0.8712, Q2
train

 = 0.8357, 
Q2

test
 = 0.8380, F

(2,18,0.01)
 = 68.6370 (6.0130), SEE = 0.3546, 

t
(18,0.0005)

 = 6.2009 (3.9216), P  =  0.0000, PRESS
(train)

 = 2.2465, 
PRESS

(test)
 = 1.3892, S

PRESS
 = 0.3533, SDEP

(train)
 = 0.3271, 

SDEP
(test)

 = 0.4812, R2
pred

 = 0.8548, R2
m

 = 0.7837, β-value 
for BCUT_SlogP_3 = −0.5300 and VSA_acc = 0.5640 (PLS: 
R2 = 0.8840, Eigen value: 1.4718, Q2 = 0.8260)

Model 5 pIC
50(QG56)

 = −1.4939 (±0.1097) logP(o/w) −0.0534 
(±0.0112) PEOE_VSA + 4 + 15.3854 (±0.5658)

N = 21, R = 0.9599, R2 = 0.9214, AdjR2 = 0.9127, Q2
train

 = 0.8954, 
Q2

test
 = 0.7876, F

(2,18,0.01)
 = 105.5100 (6.0130), SEE = 0.2920, 

t
(18,0.0005)

 = 27.1930 (3.9216), P  =  0.0000, PRESS
(train)

 = 1.5241, 
PRESS

(test)
 = 1.8214, S

PRESS
 = 0.2910, SDEP

(train)
 = 0.2694, 

SDEP
(test)

 = 0.5510, R2
pred

 = 0.8096, R2
m

 = 0.8355, β-value for 
PEOE_VSA + 4 = −0.3200 and logP(o/w) = −0.9000 (PLS: 
R2 = 0.9212, Eigen value: 1.0124, Q2 = 0.8764)

FTase, farnesyltransferase; QSAR, quantitative structure-activity relationships; PLS, partial least square; SEE, standard error estimate, 
SDEP, squared deviation error of prediction.

Table 3.  Comparison of validation parameter obtained from MLR and PLS analysis.

Model no.
MLR PLS D2 CD

R2 Q2 R2 Q2 Min Max Mean Min Max Mean
Model 1 0.83 0.78 0.83 0.79 0.0280   6.2590 1.9130 0.0007 0.2190 0.0458
Model 2 0.86 0.81 0.86 0.83 0.0064   6.4834 1.9130 0.0000 0.3360 0.0546
Model 3 0.92 0.88 0.92 0.87 0.1360 12.5009 1.9048 0.0001 0.5600 0.0738
Model 4 0.88 0.84 0.88 0.83 0.0665 12.5750 1.9048 0.0000 0.4967 0.0677
Model 5 0.92 0.90 0.92 0.88 0.0218   8.5775 1.9048 0.0001 0.2282 0.0527
CD, Cook’s distance; MLR, multiple linear regression analysis; PLS, partial least square analysis; D2, Mahalanobis distance.
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 where, y
exp

 and y
pred

 are the observed and predicted val-
ues for the dependent variables, respectively and ȳ is the 
average observed value.

The Q2-value (Q2
train

) obtained from the MLR and PLS 
are >0.78 against both the activities (FTase inhibitory 
and antiproliferative activity), which indicates that the 
selected models have sufficient predictive power and 
self-consistency. The Q2-value calculated from the test set 
compounds (Q2

test
) > 0.67 against FTase inhibitory activ-

ity and >0.78 against antiproliferative activities. These 
results show that the selected models have significant 
predictive ability. The relationship between the predicted 
and observed activity values (Table 4) are represented 
graphically in Figure 2 (graph 1–5).

The cross-validated correlation coefficient calcu-
lated for the models shows the selected models have 
significant Q2-values, but it is not sufficient to consider 
the selected models are predictive. In order to establish 
its predictivity, additional validation parameters such 
as PRESS

(train and test)
, S

PRESS
 (cross-validated standard error 

of prediction), SDEP
(train and test)

 (squared deviation error 
of prediction), R2

pred
 and R2

m
 were calculated. The low 

S
PRESS

 and SDEP-value for the models developed with 
the training set reveals the models are statistically sig-
nificant for the activity prediction. It is supported by 
the SDEP-value obtained from the test set compounds 
is also <0.6 confirm that the abovementioned statement 
for the predictive ability of the models. The PRESS-value 
for the models 1 and 2 are >2 for training and <1 for test 
sets while the models 3–5 have the values <2.2 for both 
training and test set. R2

pred
-value for the models of FTase 

inhibitory activity is >0.71 and is >0.81 for antiprolifera-
tive activity. Also the R2

m
-value for all the models is >0.7 

shows the predictive ability of the models. These valida-
tion parameters also revealed that the developed mod-
els possess significant predictive ability, and which are 
satisfied the criteria (Q2 > 0.5, R2 > 0.6, R2

pred
 > 0.5, and 

R2
m

 > 0.5) recommended by Golbraikh and Tropsha43 
and Roy and Roy46,47.

Distance based approaches are also a way of valida-
tion of the models. They represent the distance from each 
point to a particular point. Cook’s distances indicate 
the distances between the computed B values (stan-
dard coefficient values) and the values one would have 
obtained if the respective case has been excluded (LOO). 
All distances should be of about equal magnitude, other-
wise there is reason to believe that the respective case(s) 
biased the estimation of the regression coefficients48. The 
maximum Cook’s distance value of the models is <0.56 
which is <1 (squared Cook’s distances46) and the Cook’s 
distances of all the compounds have almost equal mag-
nitude (<1), showing that the equation has significant 
predictive ability for FTase inhibitory and antiprolifera-
tive activity.

Mahalanobis distances methods (D2) identify the 
interpolation region by assuming that the data have a 
normal distribution.

MD = DM( ) = (  ) (  ),T 1
x,y x x− −−∑µ µ� (3)

 where ∑−1 is the inverse of the covariance matrix41,49,50.
Mahalanobis distances improve the prediction accu-

racy and speed up a solution for QSAR. The higher the 
Mahalanobis distances for a case (molecule), the more 
the independent variables diverge from the average val-
ues. The results reveal that the cases in the developed 
models are normally distributed at 95% significance 
level.

Multicollinearity is a statistical phenomenon used 
in multiple regression models in which two or more 
predictor descriptors are highly correlated. In this situ-
ation, the regression coefficients of the descriptors may 
change erratically in response to small changes in the 
model or the data. Multicollinearity does not reduce 
the predictive power or reliability of the model as a 
whole; it only affects calculations regarding individual 
predictors.

To confirm the absence of multicollinearity, the VIF 
was calculated for each parameter in the regression. 
More precisely, the VIF is an index which measures how 
much the variance of a coefficient (square of the stan-
dard deviation) is increased because of collinearity. VIF 
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Figure 1.  Contribution chart of descriptors in the models for the 
activity. (A) Contribution of descriptors in farnesyltransferase 
inhibitory activity. (B) Contribution of descriptors in 
antiproliferative activity (QG56).
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denotes the fact that the variance of the standardized 
regression coefficients can be computed as the product 
of the residual variance (for the correlation transformed 
model) and it can be calculated as follows Equation 4.

VIF = 
1

1  

1

Tolerance2− R
or ,� (4)

 where R2 is the multiple correlation coefficient of one 
parameter’s effect regressed on the remaining parameters. 
If R equals to zero (i.e. no correlation between X and the 
remaining independent variables) then VIF equals 1, the 
minimum value. A value greater than 10 is an indication 
of potential multicollinearity problems. Not uncommonly, 
a VIF of 10 or even one as low as 4 (equivalent to a toler-
ance level of 0.10 or 0.25) have been used as rules of thumb 
to indicate excessive or serious multicollinearity. In the 
selected models, the VIF value between 1 and 1.3 shows 
that the descriptors in the selected models are free from 
multicollinearity51,52. The results are provided in Table 5.

A DW test was employed to check the serial correla-
tion of residuals (correlation of adjacent residuals). The 

DW statistics is useful for evaluating the presence or 
absence of a serial correlation of residuals (i.e. whether 
or not residual for adjacent cases are correlated, indicat-
ing that the observations or cases in the data file are not 
independent).

d 
e  e

e

t tt 

t t

=
− − 

(  )
,

 1
2

= 2

T

= 1

T 2

∑
∑

� (5)

 where e
t
 is the residual associated with the observa-

tion at time t, since d is approximately equal to 2(1–r), 
where r is the sample autocorrelation of the residu-
als, d = 2 indicates no autocorrelation. The value of d 
always lies between 0 and 4. If the DW statistic is sub-
stantially less than 2, there is evidence of positive serial 
correlation and a value toward 4 indicates negative 
autocorrelation53,54.

The tabulated upper and lower bound values of 
Durbin–Watson were considered to test the hypothesis 
of zero autocorrelation against the positive and negative 
autocorrelations. In the present study, the DW values 

Table 4.  Observed and predicted activity of the significant models.

Compound code
Activity 1 
[pIC

50(FT)
] Model 1 Model 2

Activity 2 
[pIC

50(QG56)
] Model 3 Model 4 Model 5

8A 6.77 6.81 6.68 5.72 6.22 6.25 5.90
8B 6.44 6.62 6.63 5.83 6.22 6.25 5.60
8C 6.44 6.61 6.62 — 6.28* 6.31* 5.01*
8D — 7.37* 7.41* 5.20 5.15 5.13 5.07

8E 6.07 6.85 6.75 — 7.30* 7.40* 7.09*
8F 7.52 7.19 7.35 6.26 6.17 6.20 6.89
8G 6.60 7.27 7.17 5.30 6.03** 6.06** 6.05**
8H 8.19 8.05** 8.07** 5.83 6.02** 6.03** 6.30**
8I 8.48 7.85 7.96 7.05 6.97 7.04 7.07
8J 8.07 8.26 8.19 7.41 7.02 7.10 7.31
8K 8.55 8.70 8.80 7.64 7.62 7.73 7.75
8L 7.96 7.88 7.81 7.63 7.42** 7.33** 7.18**
8M 8.20 7.81 7.90 6.84 6.96 7.03 7.01
8N 8.40 8.26 8.19 7.44 7.03 7.11 7.36
8O 8.47 8.70 8.80 7.49 7.62 7.73 7.80
8P 8.14 7.81 7.90 6.80 6.96 7.03 7.07
8Q 8.49 8.29 8.04 7.44 7.62 7.73 7.30
8R 9.05 8.96 8.90 8.09 8.30 7.74 8.10
8S 8.70 9.12 9.10 7.82 7.63 7.73 7.32
8T 9.00 9.26 9.28 7.77 7.48 7.04 7.44
8U 7.96 8.12** 8.17** 6.85 6.98 7.05 7.14

8V 8.59 8.85** 8.80** — 8.07* 7.83* 9.58*
8W 8.19 8.00 8.01 7.13 7.26** 6.97** 7.08**
8X 8.62 8.98** 9.06** 7.84 7.72 7.83 7.71

11A 8.82 7.99 8.13 8.23 7.79 7.73 8.18
11B 7.31 7.40** 7.38** 6.69 6.89** 7.13** 7.18**
11C 9.10 8.65** 8.52** 8.96 8.24** 8.28** 8.19**
11D 8.92 9.03 8.93 8.82 8.64 8.64 8.60
11E 9.15 9.51 9.58 8.70 9.25 9.28 9.04
11F 8.96 8.62 8.69 8.70 8.59 8.58 8.31
Activity 1: farnesyltransferase inhibitory activity; activity 2: antiproliferative activity (QG56).
*Inactive compounds.
**Test set compounds.
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are closer to 2 which show that the values are above the 
positive autocorrelation and below the negative auto-
correlation of the tabulated upper and lower bound 
value at 5% significance level (Table 5). The following 
criteria were adopted to check the serial correlation of 
the models55,56.

If the value is less than the lower limit then the hypoth-•	
esis is in favour of positive first-order correlation.
If the value lies between the lower and upper limits •	
then the test is inconclusive.
If the value is above the upper limit, there is no auto-•	
correlation or may be negative autocorrelation.
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Figure 2.  Graph 1–5: observed and predicted activity of the models. (A) Graph 1: Observed versus predicted activity of model 1 (r = 0.9126). 
(B) Graph 2: Observed versus predicted activity of model 2 (r = 0.9269). (C) Graph 3: Observed versus predicted activity of model 3 
(r = 0.9588). (D) Graph 4: Observed versus predicted activity of model 4 (r = 0.9403). (E) Graph 5: Observed versus predicted activity of 
model 5 (r = 0.9599).
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If the test statistics >2, the quantity 4–d is computed •	
and the values with the upper and lower limit of posi-
tive autocorrelation compared.

Discussion of descriptors in the QSAR model
FTase inhibitory activity
Model 1 is a biparametric model, built with a subdivided 
surface area descriptor (SMR_VSA3) and a partial charge 
descriptor (PEOE_RPC+). The subdivided surface area 
descriptors are based on an approximate accessible VSA 
calculation (in Å2) for each atom, v

i
 along with other 

atomic property, P
i
. The v

i
-values are calculated using 

a connection table approximation. The properties (P
i
) 

of small molecules can be calculated as the sum of the 
contributions of each of the atoms in the molecule as per 
Equation 6.

P_VSA
k
 = −V

i
δ[P

i
€(a

k 
−1,a

k
)]  k = 1,2,3, &, n� (6)

 where a
o
 <a

k
 <a

n
 are interval boundaries such that (a

o
, a

n
) 

bound are values of P
i
 in any molecule. Each VSA type 

descriptor can be characterized as the amount of surface 
area with P in a certain range37,57. SMR_VSA3 is defined to 
be the sum of the v

i
 over all atoms i. P

i
 denotes the contri-

bution to molar refractivity for atom i as calculated in the 
SMR descriptor, calculated in a specified range, from 0.35 
to 0.39. This descriptor intends to reflect the polarizabil-
ity and the atomic contribution to the molar refractivity42. 
The positive sign of the coefficient in this descriptor sug-
gests that the polarizability on the VSA of the molecule 
is favourable for the FTase inhibitory activity. It reveals 
that the inhibitors should have polarizable groups in 
their structure to interact with the receptor (FTase) sig-
nificantly. This point emphasizes the polar nature of the 
binding pocket of FTase and the importance of polar 
ligand-receptor interactions for a good activity.

The partial charge descriptor (PEOE_RPC+) provides 
the largest positive q

i
 divided by the sum of the posi-

tive q
i
 (the relative positive partial charge). The Partial 

Equalization of Orbital Electronegativities (PEOE) is a 
method of calculating atomic partial charges, in which 
charge is transferred between bonded atoms until 
equilibrium. The amount of charge transferred at each 

iteration is damped with an exponentially decreasing 
scale factor to guarantee convergence. The amount of 
charge transferred, dq

ij
, between atoms i and j when X

i
 

> X
j
 is

d  = 
 X X

X
 

+
q

1
2

( )
,ij

k i j

j







−
� (7)

 where X
j
+ is the electronegativity of the positive ion of 

atom j, X
i
 is the electronegativity of atom i (quadrati-

cally dependent on partial charge) and k is the iteration 
number of the algorithm. PEOE is the electronegativity 
concept as per the following equation.

χv  = 
1

2
 ( )I Ev v� (8)

 In this equation, the electronegativity is related to its 
ionization potential, I, and its electron affinity E. The 
electronegativity of an atom further depends on the 
charge of other atoms in this orbital and also the charge of 
the same atom in other orbitals41,58,59. The coefficient in the 
descriptor carries a negative sign, which shows that the 
relative positive charge of the molecules is detrimental 
for the FTase inhibitory activity. This result illustrates the 
importance of positively-charged groups on the enzyme 
active site for the interaction with this series of mol-
ecules. In fact, the two available X-ray crystallographic 
structures for molecules in this series (PDB code 2ZIR 
and 2ZIS for molecules 8k and 8w, respectively38) show 
the existence of particularly short Zn-N bond-lengths60 
between these molecules and the catalytically relevant 
Zn(II) metal ion in the FTase active site. The positively-
charged Arg202β amino acid residue represents another 
positively-charged potential point of interaction for this 
series of molecules, well portrayed for molecules 8k and 
8w in the corresponding X-ray structures, for which an 
interaction with the R1 substituent has been observed38. 
This observation could also partially explain, from an ato-
mistic point of view, the very good correlation obtained 
for this descriptor in the QSAR analysis. The important 
role of this amino acid residue for molecule binding to 

Table 5.  Redundancy (VIF, tolerance) and Durbin–Watson statistics of the QSAR models.

Model Descriptors Tolerance   R2 VIF
DW

Calculated Tabulated
Model 1 PEOE_RPC+ 0.9570 0.0430 1.0449 2.3500 1.078–1.660

SMR_VSA3 0.9570 0.0430 1.0449 1.6500*  

Model 2 b_triple 0.9965 0.0035 1.0035 2.1059 1.078–1.660
PEOE_RPC+ 0.9965 0.0035 1.0035 1.8941*  

Model 3 BCUT_SlogP_3 0.7716 0.2284 1.2960 1.8337 1.026–1.669
VSA_pol 0.7716 0.2284 1.2960   

Model 4 BCUT_SlogP_3 0.7773 0.2227 1.2865 2.0252 1.026–1.669
VSA_acc 0.7773 0.2227 1.2865 1.9748*  

Model 5 PEOE_VSA + 4 0.9996 0.0004 1.0004 2.3965 1.026–1.669
logP(o/w) 0.9996 0.0004 1.0004 1.6035*  

*The value obtained from subtracting DW value from 4 (4–d).
DW, Durbin–Watson; QSAR, quantitative structure-activity relationships; VIF, variable inflation factor.
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the FTase active site has been previously demonstrated 
in structural and mutagenesis studies61–65, and was the 
subject of particular attention in some of our molecular 
dynamics studies29, suggesting that against natural pep-
tidic CAAX substrates, this residue establishes important 
interaction with the negatively charged terminal car-
boxylate group, and has a very important contribution 
for enzyme-substrate affinity. In addition to this amino 
acid residue, several other positively-charged amino 
acid residues have been previously implicated in sub-
strate/inhibitor binding61,62,65. Examples include Lys164α, 
Arg291β and Lys294 β. However, for this particular set of 
molecules no direct implication by these residues could 
be inferred in the present study.

Model 2 is composed of an atom and bond count 
descriptor (b_triple) and the partial charge descriptor 
(PEOE_RPC+). The atom and bond count descriptor sig-
nify the number of triple bonded groups in the molecules 
and the positive contribution of the descriptor suggests 
that the presence of the triple bond is favourable for the 
FTase inhibitory activity. The data set shows that the CN 
group is the only triple bonded group present in the mol-
ecules, which suggests that the presence of CN groups in 
the molecules is favourable for FTase inhibitory activity. It 
is evidenced by the compounds in the data set that those 
with triple bonded groups (CN) (8h–8x and 11a–11f) pos-
sess significant activity, more than the other compounds. 
Some compounds such as 8x and 11d–11f with 2 or CN 
groups have considerable increase in FTase inhibitory 
activity. Structural analysis of the available X-ray crys-
tallographic structures on molecules on this series of 
compounds38 have suggested that the hydrogen bonding 
between the cyano group (triple bonded group) on the 
A-ring (R1) and Arg202β improved the enzyme inhibi-
tory activity, even though for the interaction between the 
cyano group on the B-ring (R3 site) and the enzyme no 
obvious interactions had been noticed, with the two X-ray 
structures available for molecules in the series suggesting 
that the B-ring interacts with the active-site amino acid 
residues Leu96β, Trp102β, and Tyr361β and with the end 
of the isoprenoid portion of the FPP molecule.

The second descriptor, relative partial positive charge 
descriptor (PEOE_RPC+), suggests that the partial 
positive charges in the molecules are detrimental for the 
activity and has already discussed in the model 1. This 
biparametric model indicates that the presence of triple 
bonded groups and reduced partial positive charge are 
favourable for the FTase inhibitory activity. The models 
1 and 2 were developed with the positively contributed 
SMR_VSA3 and b_triple descriptors, respectively and the 
negatively contributed PEOE_RPC+ descriptor. Note that 
both SMR_VSA3 and b_triple descriptors reflect the ben-
eficial effect of polar groups in the ligand for the affinity 
for FTase.

In order to interpret the effect of the descriptors in a 
given compound for FTase inhibitory activity, we have 
multiplied the descriptors with their respective regres-
sion coefficients [PEOE_RPC+ × regression coefficient 

(PEOE_RPC + RC) and SMR_VSA3 × regression coefficient 
(SMR_VSA3RC); Supplementary Table S3].

For the compounds studied PEOE_RPC + RC varies 
between a minimum of 3.0698 (compound 8t) and a max-
imum of 4.50040 (compound 8c), while SMR_VSA3RC 
changes between 0.4932 (8b, 8c, and 8f) and 3.0636 
(compound 11e). As both contributions differ in sign, 
the module of the ratio PEOE_RPC + RC/SMR_VSA3RC 
was determined to asses for each individual compound 
the relative importance of the contributions arising for 
each compound in the global molecule activity. For all 
compounds the contribution from the PEOE_RPC + RC 
is dominant, varying between a maximum ratio of 9.1315 
(compound 8c) and a minimum ratio of 1.3628 (11e) 
(due to the negative contribution of the PEOE_RPC + RC 
term, the lower the value, the more favourable the activ-
ity). These conclusions illustrate the high importance of 
positive partial charge in the molecule (negative contri-
bution), compared with polarizability and the atomic 
contribution to the molar refractivity for ligand activity.

The compounds (8a–8g) have PEOE_RPC + RC values 
between 3.88 and 4.50 and the value for 8w is 3.40. The 
other compounds in the series have the values <4.26, 
showing that the decreased PEOE_RPC + RC value of 
compound 8w is due to the small value of PEOE_RPC+. 
The SMR_VSA3RC value for the compounds 8a–g is 
between 0.49 and 0.72 while 8w is 0.78. All the other 
compounds in the series have SMR_VSA3RC values 
above 1.35. Compound 8w has a comparatively higher 
SMR_VSA3RC value (0.7827) and lower PEOE_RPC + 
RC value (3.3985) than the low active compounds in the 
series (PEOE_RPC + RC/SMR_VSA3RC ratio of 4.3418).

Other active compounds in the series posses propor-
tionally higher SMR_VSA3RC and smaller PEOE_RPC + 
RC values. Compound 11e, the most active compound in 
the series, has values of 3.06 and 4.18 for SMR_VSA3RC 
and PEOE_RPC + RC, respectively, resulting a compara-
tively low ratio of only 1.3628.

Compounds 8k, 8o, 8r, 8s, 8t, 8v, 8x, 11d, and 11f have 
also rather low ratio values, and display also very sig-
nificant inhibitory activities. The low active compounds 
(8a–g) have ratio values >5.64 and the other active com-
pounds have ratio values <4.34. The fact that the entire 
most active compounds in the series (8k, 8o, 8r, 8s, 8t, 8x, 
11d, 11e, and 11f) have PEOE_RPC + RC/SMR_VSA3RC 
below 2 clearly illustrates the importance of the PEOE_
RPC+ and SMR_VSA3 terms for FTase inhibitory activity.

In model 2, the b_triple descriptor contributes posi-
tively along with the negatively contributing PEOE_RPC+ 
descriptor. This suggests, that the presence of triple bonds 
(CN groups) in the molecule is favourable for the FTase 
inhibitory activity. In the data set, all the compounds 
except 8a–g and 8w have CN groups in their structure. 
Compound 8w does not have a triple bonded group (CN) 
in its structure, but has significant FTase inhibitory activ-
ity experimentally. This may be due to the influence of 
the other physicochemical properties of the compounds. 
It suggests that the presence of a CN (triple bond) is 
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favourable for the activity but it does not fully determine 
the FTase inhibitory activity of the compounds.

In order to find out the role of b_triple and PEOE_RPC+ 
descriptors of the compounds for FTase inhibitory activ-
ity, the product of the descriptors with their respective 
regression coefficients [PEOE_RPC+ × regression coef-
ficient (PEOE_RPC + RC1) and b_triple × regression coef-
ficient (b_tripleRC)] were calculated.

The calculated PEOE_RPC + RC1 values varies between 
a minimum of 3.8805 (compound 8t) and a maximum of 
5.6935 (compound 8c), while b_tripleRC value for the 
compounds do not have CN groups posses 0 and the CN 
group containing compounds have b_tripleRC values of 
0.8488 (single CN group), 1.6976 (two CN groups) (8k, 8o, 
8x, 11d, and 8f) and 2.5464 for compound 11e (posses 
three CN groups). As both contributions differ in sign, 
the module of the ratio PEOE_RPC + RC1/b_tripleRC 
was determined to asses for each individual compound 
the relative importance of the contributions arising for 
each compound in the FTase inhibitory activity. For all 
compounds the contribution from the PEOE_RPC + RC1 
is dominant, varying between a maximum ratio of 6.3527 
(compound 8h) and a minimum ratio of 2.0727 (11e) (due 
to the negative contribution of the PEOE_RPC + RC1 term, 
the lower the value, the more favourable the activity). But 
the compounds 8a–g and 8w have a value of 0 because 
the b_tripleRC value of these compounds also 0. These 
conclusions illustrate the importance of positive partial 
charge in the molecule (negative contribution), along 
with the triple bonded group (CN) for ligand activity.

The compounds (8a–8g) have PEOE_RPC + RC1 val-
ues between 5.69 and 4.90 and the value for 8w is 4.30. 
The other compounds in the series have values <5.39. The 
decreased PEOE_RPC + RC1 value of compound 8w is due 
to the small value of PEOE_RPC+. The active compounds 
in the series posses proportionally higher b_tripleRC and 
smaller PEOE_RPC + RC1 values. Compound 11e, the 
most active compound in the series, has values of 2.5464 
and 5.2779 for b_tripleRC and PEOE_RPC + RC1, respec-
tively, resulting a comparatively low ratio of only 2.0727.

Compounds 8k, 8o, 8r, 8s, 8t, 8v, 8x, 11d, and 11f have 
also rather low ratio values, and display also very sig-
nificant inhibitory activities. The low active compounds 
(8a–g) have ratio values 0 (because of zero b_tripleRC 
values). The fact that all the most active compounds in 
the series (8k, 8o, 8r, 8s, 8t, 8x, 11d, 11e, and 11f) have 
PEOE_RPC + RC1/b_tripleRC below 5 clearly illustrates 
the importance of the PEOE_RPC+ and b_triple terms for 
FTase inhibitory activity.

Antiproliferative activity (QG56)
Model 3 was developed with the pharmacophore atom 
type (vsa_pol) and the adjacency and distance matrix 
(BCUT_SlogP_3) descriptors. The pharmacophore atom 
type descriptor is the VSA (P_VSA) descriptors that con-
siders only the heavy atoms of a molecule and assign a 
type to each atom. Therefore, hydrogen atoms are sup-
pressed during the calculation. The feature set in this 

type includes donor, acceptor, polar (both donor and 
acceptor), positive (base), negative (acid), hydrophobes, 
and others. The vsa_pol is an approximation to the sum 
of VSA (Å2) of polar atoms (atoms that are both hydro-
gen bond donors and acceptors42). It reveals that the 
polar groups, such as hydrogen bond donor and accep-
tor groups, in the van der Waals surface of the molecule 
are needed for hydrogen bonding with the polar groups 
present in the active site.

The other descriptor is an adjacency and distance 
matrix descriptor (BCUT_SlogP_3), in which the BCUT 
metrics are an extension of Burden’s parameters. These 
are based on a combination of the atomic number for 
each atom and a description of the nominal bond-type 
for adjacent and non-adjacent atoms, and incorporate 
both connectivity information and atomic properties (e.g. 
atomic charge, polarizability, hydrogen bond abilities) 
relevant to intermolecular interactions66. Some BCUT 
metrics can be generated, based on the connectivity and 
atomic information, and on the scaling factors controlling 
the relative balance of these two kinds of information. It 
can also capture sufficient structural features of molecules 
to yield useful measurements of molecular diversity67. The 
Burden’s parameter BCUT_SlogP_3 has a BCUT descrip-
tor that uses the atomic contribution to logP (calculated 
with the Wildman and Crippen SlogP method) instead 
of the partial charges55 The partition coefficient (logP) of 
small molecules can be calculated as the sum of the con-
tributions of each of the atoms in the molecule.

P  = n acalc i i� (9)

 where P
calc

 is the property to be calculated (logP), n
i
 is the 

number of atoms type i present in the molecule and a
i
 

is the contribution for atoms of type i39,57. The negative 
contribution of the descriptor explains that the hydro-
phobicity of the molecules should be small to favour 
the antiproliferative activity of the benzofuran deriva-
tives. It is in agreement with the fact that the active site 
of the receptor is hydrophilic and that passive diffusion 
through the cell membrane is not limiting on this series 
of analogues.

Model 4 also has the same type descriptors as model 
3, namely the pharmacophore type descriptor (vsa_acc) 
and the adjacency and distance matrix (BCUT_SlogP_3) 
descriptor. In this model, the pharmacophore type 
descriptor is different from the earlier model. The phar-
macophore descriptor (vsa-acc) is a VSA descriptor, 
which calculates the approximation to the sum of VSA 
(Å2) of pure hydrogen bond acceptors (not counting 
acidic atoms and atoms that are both hydrogen bond 
donors and acceptors such as -OH). The descriptor 
reveals that the compounds that have pure hydrogen 
bond acceptor groups are favourable for the antiprolif-
erative activity. Models 3 and 4 explain that the hydrogen 
bonding groups are necessary to establish stable drug 
receptor interactions by hydrogen bonding. The signifi-
cance of the BCUT_SlogP_3 has already been explained 
in model 3.
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Model 5 was found to be the most important two-
variable correlation for modelling antiproliferative activ-
ity of benzofuran derivatives. It describes the role of the 
partial charge descriptors [PEOE_VSA4) and the physical 
descriptor (logP(o/w)] for the antiproliferative activity 
of benzofuran derivatives. The partial charge descriptor 
(PEOE_VSA4) provides the partial charge of an atom (q

i
) 

on the VSA (Å2) of an atom (v
i
). It is calculated in a range 

of q
i
 (partial charge of an atom i) value between 0.20 and 

0.25. This PEOE_VSA4 descriptors uses PEOE method for 
the partial charge calculation on the VSA42. The descrip-
tor PEOE_VSA4 has a negative coefficient in the model, 
suggesting that the positive charged groups present on 
the VSA of the molecule are detrimental for the activ-
ity. It reveals that a decrease in the descriptor value may 
improve the antiproliferative activity of the compounds. 
It highlights the importance of positively charge groups 
in the active site, showing also that active molecules 
should bear negative charges (or at least not bears posi-
tive charges).

The second molecular descriptor incorporated into 
the model is the logarithm of the octanol/water parti-
tion coefficient [logP(o/w)]. The descriptor logP(o/w) 
is a measure of overall hydrophobicity of the molecule 
and therefore the negative coefficient associated with 
this term implies that a decrease in the lipophilicity of 
the molecule will cause a corresponding increase in the 
antiproliferative activity of the derivatives.

The models 3–5 describe the physicochemical prop-
erties responsible for the antiproliferative activity on 
QG56 cell lines. In these models, the hydrophobicity 
(BCUT_SlogP_3 and logP(o/w) and polar descriptors 
(vsa_acc, vas_pol and PEOE_VSA4) contributed for the 
activity prediction. The hydrophobic descriptors in the 
models are not merely a determinant for effective bind-
ing to the receptors. In fact, they are also important for 
the molecule to reach its target (cross the biological bar-
riers, avoid sequestrion by other enzymes or receptors, 
avoid premature metabolization, etc.).

The calculated proportionality of the descriptors 
(BCUT_SlogP_3RC1 (model 3)/vsa_polRC and BCUT_
SlogP_3RC2 (model 4)/vsa_accRC) shows some inter-
esting trends regarding the relative contribution of the 
descriptor values for the antiproliferative activity (Table 
S3). The ratio value of BUCT_SlogP_3RC1/vsa_polRC var-
ies between 119.36 and 119.56 for compounds 8a–c, 8f, 8g, 
while between the other compounds it changes as much 
as between 29.69 and 62.12. In a similar fashion, the ratio 
BCUT_SlogP_3RC2/vsa_accRC varies between 278.33 
and 400.79 for compounds 8a–c, 8f, 8g, and changes 
between 38.60 and 120.41 for the other compounds.

Compounds 11d–f have considerably smaller 
ratio values in the series (37.08, 29.69, and 38.69 for 
BCUT_SlogP_3RC1/vsa_polRC and 51.62, 38.25, and 
54.73 for BCUT_SlogP_3RC2/vsa_accRC) and display 
very significant activities in nM range. In the same 
way, compound 8v also has significant value for both 
descriptors i.e. 35.33 for vsa_polRc ratio and 54.12 for 

vsa_accRC ratio. Unfortunately, that compound was not 
tested experimentally. In addition, for both cases (ratios 
BCUT_SlogP_3RC1/vsa_polRC and BCUT_SlogP_3RC2/
vsa_accRC), compounds 8d and 8e have large ratio val-
ues, but they are experimentally inactive or display very 
low activity, suggesting that other structural properties 
not included in the models may cause its low antiprolif-
erative activity.

Model 5 describes the importance of log partition 
coefficient and PEOE_VSA4 for antiproliferative activity. 
In this model, the descriptors are negatively contributing 
for the antiproliferative activity. The calculated logP(o/w)
RC of the compounds shows that compounds 8a–d have 
values >9 and that the same compounds have PEOE_
VSA4RC values of 0.55. All other compounds in the series 
posses logP(o/w)RC values <8 and have the same PEOE_
VSA4RC value of the abovementioned compounds. The 
exceptions are compounds 8r, 8s, and 11a–f. Compound 
8r and 8t have small logP(o/w)RC values of 6.0 and 6.8, 
respectively. In these studies, compounds 8d and 8e are 
predicted as active compounds but experimentally they 
have low active/inactive. Structurally, these compounds 
posses COO-t-Bu and COOH groups in their structure (in 
A-ring). None of the compounds in the series has these 
groups in their structure, in addition to these two com-
pounds. So the bulkiness or other physicochemical effect 
of these compounds may be preventing the compounds 
to reach the site for binding.

The higher complexity associated with the antiprolif-
erative activity against cancer cell lines measurement, 
when compared against the much more specific enzyme 
inhibitory activity analysis, prevent the establishment 
of a direct relationship between the results and the pos-
sible conformation of the molecules in the FTase active 
site; as in antiproliferative activity analysis the FTase-
molecule interactions may be just one in a number of 
factors responsible for the overall activity observed. 
Nevertheless, the main conclusions derived from this 
analysis are in line with the results obtained for the FTase 
inhibitory activity, and with the structural analysis made 
from the X-ray crystallographic structures of molecules 
in this series bound to FTase, suggesting that in spite 
of the natural differences observed, FTase-molecule 
binding is mainly responsible for the antiproliferative 
activity.

The results obtained for the contribution of each 
descriptor for the prediction (β-coefficient) of the 
activities show that the VSA (P_VSA) descriptors such 
as pharmacophore descriptors [VSA_pol (0.6050) and 
VSA_acc (0.5640)], subdivided surface area descriptors 
[SMR_VSA3 (0.7340)] are the major contributors for the 
activities (Figure 2). Except for model 2, the remaining 
models have P_VSA as one of the contributing descrip-
tors to explain structural features of the inhibitors for the 
FTase inhibitory and antiproliferatve activity. The study 
provides the information that the negatively charged 
descriptors and hydrogen bond acceptor and donor 
groups on the VSA are favourable for the activities, 
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while the lipophilicity and polarizability on the VSA of 
the molecule are detrimental for the activities.

Conclusion

From the study, it is concluded that the QSAR mod-
els developed by MLR methods and PLS methods are 
statistically significant. The significant models were 
selected by correlation coefficient, Fischer value, t 
value and other statistical relevance of the contributed 
descriptors. The stability and predictive power of the 
models were evaluated by parameters such as cross-
validated correlation coefficient, Cook’s distance and 
Mahalanobis distance, VIF and DW, obtained from the 
validation studies and which can be used for further 
study. The significant QSAR model developed from the 
studies shows that the subdivided surface area (SMR_
VSA3), the atom and bond count descriptors and the 
partial positive charge descriptors (PEOE_RPC+) con-
tribute for the FTase inhibitory activity, either posi-
tively or negatively. It reveals that the molar refractivity 
(polarizability) on the VSA and the number of triple 
bonds in the molecules are favourable for the FTase 
inhibitory activity and the partial positive charge of 
the molecules is unfavourable for the FTase activity. 
The results obtained from the antiproliferative activity 
shows that the partition coefficient [BCUT_SlogP and 
logP(o/w)] and PEOE_VSA4 of the molecules are detri-
mental for the activity, while the hydrogen bond accep-
tor and donor groups on the van der Waals surface of 
the molecules are favourable for the antiproliferative 
activity. The experimental results obtained from both 
evaluations (FTase inhibitory activity and QG56 can-
cer cell lines) show that this series of compounds have 
significant activity against FTase inhibitory activity, as 
well as having significant anticancer activity. The study 
shows that the P_VSA descriptors (subdivided surface 
area, pharmacophore type) are the main contributors 
for the inhibitory activities (FTase and antiprolifera-
tive), along with the atom and bond count and the par-
tial charge descriptors, for the FTase inhibitory activity, 
and the adjacency and distance matrix descriptors and 
the conformational charge descriptors, for antiprolif-
erative activity. The study highlights the importance 
of the positively-charged groups on the active site of 
the enzyme or receptor (possibly the Arg202β amino 
acid residue and the Zn(II) ion), and the existence of 
hydrogen bond donor and acceptor groups on the VSA 
of the molecules, and of negatively charged groups in 
their structures. The proposed models can be used for 
the design and development of novel FTase inhibitors 
as anticancer molecules, particularly when comple-
mented with detailed structural analysis of the available 
X-ray structures of molecules in the series considered. 
These models will also be applied in future studies 
considering also protein-ligand docking, molecu-
lar dynamics simulations, and detailed free energy 

calculations in order to develop new inhibitors for this 
important enzyme.

Supporting information

The correlation matrix between the physicochemical 
descriptors and with the biological activity (FTase inhibi-
tory activity and antiproliferative activity), (Table S1 and 
S2) and the calculated physicochemical descriptors val-
ues, which are contributed in the models (Table S3) are 
provided as supporting materials.
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